Аннотация к рабочей программе курса внеурочной деятельности «Математика и конструирование» для начального общего образования

Настоящая программа разработана на основе:

- Ст. 28 Федерального закона Российской Федерации от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации» (принят Государственной Думой 21.12.2012 г., одобрен Советом Федерации 26.12.2012 г.);
- Приказа Министерства образования Российской Федерации от 05.03.2004 г. № 1089 «Об утверждении Федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» с изменениями и дополнениями от 03.06.2008 г., 31.08.2009 г., 19.10.2009 г., 11.11.2011 г., 24,31.01.2012 г.;
- Федерального компонента государственного образовательного стандарта. Начального общего образования. Математика;
- Приказа Министерства образования Российской Федерации от 9 марта 2004 г. N 1312 «Об утверждении федерального базисного учебного плана и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования» с изменениями от 20.08.2008 г., 30.08.2010 г., 03.06.2011 г., 01.02.2012 г.;
- Приказа Министерства образования и науки Российской Федерации от 19.12.2012 г. № 1067 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию на 2013-2014 учебный год»;
- Программы факультативного «Занимательная курса математика» Е.Э.Кочуровой, программы интегрированного «Математика курса конструирование» С.И. Волковой, О.Л. Пчёлкиной, программы факультативного курса «Наглядная геометрия». 1 -4 КЛ. Белошистой A.B., факультативного курса «Элементы геометрии в начальных классах». 1- 4 кл. Шадриной И.В. Программа курса составлена в соответствии с требованиями Федерального государственного образовательного стандарта начального общего образования.

Факультативный курс «Математика и конструирование» разработан как дополнение к курсу «Математика» в начальной школе. Основная цель изучения курса «Математика и конструирование» состоит в том, чтобы

- обеспечить числовую грамотность учащихся,
- дать первоначальные геометрические представления,
- усилить развитие логического мышления и пространственных представлений детей. Курс призван решать следующие задачи:
 - 1) расширение математических, в частности геометрических, знаний и представлений младших школьников и развитие на их основе пространственного воображения;

- 2) формирование у детей графической грамотности и совершенствование практических действий с чертёжными инструментами;
- 3) овладение учащимися различными способами моделирования, развитие элементов логического и конструкторского мышления, обеспечение более разнообразной практической деятельности младших школьников.
- курс «Математика факультативный конструирование» способствовать математическому развитию младших школьников: развитию умений использовать математические знания ДЛЯ описания И моделирования пространственных отношений, формированию способности к продолжительной умственной деятельности и интереса к умственному труду, развитию элементов конструкторского мышления, стремлению использовать логического математические знания в повседневной жизни.

В соответствии с изложенными целями обучения основными положениями содержания и структуры курса являются:

- преемственность с действующим в настоящее время курсом математики в начальных классах, который обеспечивает числовую грамотность учащихся,
- умение решать текстовые задачи и т.д.,
- курсом трудового обучения, особенно в той его части, которая обеспечивает формирование трудовых умений и навыков работы с различными материалами, в том числе с бумагой, картоном, тканью, пластилином, проволокой, а также формирование элементов технического мышления при работе с металлоконструктором;
- усиление геометрической линии начального курса математики, обеспечивающей развитие пространственных представлений и воображения учащихся и включающей в себя на уровне практических действий изучение основных линейных, плоскостных и некоторых пространственных геометрических фигур, и формирование на этой основе базы и элементов конструкторского мышления и конструкторских умений;
- усиление графической линии действующего курса трудового обучения, обеспечивающей умения изобразить на бумаге сконструированную модель и, наоборот, по чертежу собрать объект, изменить его в соответствии с изменениями, внесёнными в чертёж, - всё это призвано обеспечить графическую грамотность учащихся начальных классов;
- привлечение дополнительного материала из математики и трудового обучения, который связан с идеей интеграции курса и обеспечивает формирование новых умений и знаний, важных для нового курса. Это, например, представления об округлении чисел, о точности измерений и построений.

Курс «Математика и конструирование» даёт возможность дополнить учебный предмет «математика» практической конструкторской деятельностью учащихся. Изучение курса предполагает органическое единство мыслительной и практической

изучение курса предполагает органическое единство мыслительной и практической деятельности учащихся во всём многообразии их взаимного влияния и дополнения одного вида деятельности другим; мыслительная деятельность и полученные математические знания создают основу, базу для овладения курсом, а специально организованная конструкторско-практическая деятельность, в свою очередь, не

только обуславливает формирование элементов конструкторского и технического мышления, конструкторских и технических умений, но и способствует актуализации и закреплению в ходе практического использования математических знаний, умений, повышает уровень осознанности изученного математического материала, создаёт условия для развития логического мышления и пространственных представлений учащихся.

Специфика целей и содержания курса «Математика и конструирование» определяет и своеобразие методики его изучения, форм и приёмов организации уроков. Одновременно с изучением арифметического и геометрического материала и в единстве с ним выстраивается система задач и заданий конструкторского характера, расположенных в порядке нарастания трудностей и постепенного обогащения новыми элементами по моделированию и конструированию, основой освоения которых является практическая деятельность детей; предполагается поэтапное формирование навыков самостоятельного выполнения заданий, включающих не только воспроизведение, но и выполнение самостоятельно некоторых элементов, а также включение элементов творческого характера; создаются условия для формирования навыков контроля И самоконтроля ходе заданий. Принципы, которые решают современные образовательные задачи с учётом запросов будущего:

- 1. Принцип деятельности включает ребёнка в учебно- познавательную деятельность. Самообучение называют деятельностным подходом.
- 2. Принцип целостного представления о мире в деятельностном подходе тесно связан с дидактическим принципом научности, но глубже по отношению к традиционной системе. Здесь речь идёт и о личностном отношении учащихся к полученным знаниям и умении применять их в своей практической деятельности.
- 3. Принцип непрерывности означает преемственность между всеми ступенями обучения на уровне методологии, содержания и методики.
- 4. Принцип минимакса заключается в следующем: учитель должен предложить ученику содержание образования по максимальному уровню, а ученик обязан усвоить это содержание по минимальному уровню.
- 5. Принцип психологической комфортности предполагает снятие по возможности всех стрессообразующих факторов учебного процесса, создание в классе и на уроке такой атмосферы, которая расковывает учеников, и, в которой они чувствуют себя уверенно. У учеников не должно быть никакого страха перед учителем, не должно быть подавления личности ребёнка.
- 6. Принцип вариативности предполагает развитие у детей вариативного мышления, т. е. понимания возможности различных вариантов решения задачи и умения осуществлять систематический перебор вариантов. Этот принцип снимает страх перед ошибкой, учит воспринимать неудачу не как трагедию, а как сигнал для её исправления.
- 7. Принцип творчества (креативности) предполагает максимальную ориентацию на творческое начало в учебной деятельности ученика, приобретение ими собственного опыта творческой деятельности.
- 8. Принцип системности. Развитие ребёнка процесс, в котором взаимосвязаны и взаимозависимы все компоненты. Нельзя развивать лишь одну функцию.

Необходима системная работа по развитию ребёнка.

- 9. Соответствие возрастным и индивидуальным особенностям.
- 10. Адекватность требований и нагрузок.
- 11. Постепенность.
- 12. Индивидуализация темпа работы.
- 13. Повторность материала.

В методике проведения занятий по курсу «Математика и конструирование» учитываются возрастные особенности и возможности детей младшего школьного возраста: часть материала (особенно в 1 классе) излагается в занимательной форме: сказка, рассказ, игра, загадка, диалог учитель - ученик или ученик-ученик и т.д.

Изучение геометрического материала идёт на уровне представлений, а за основу изложения учебного материала берётся наглядность и практическая деятельность учащихся.

Элементы конструкторско-практической деятельности учеников равномерно распределяется за весь курс, и включаются в каждое занятие курса «Математика и конструирование», причём задания этого плана органично увязываются с изучением арифметического и геометрического материала. Так, при конструировании различных объектов (цифр, букв, геометрических фигур и т.п.) из различных палочек, кусков проволоки, из моделей геометрических фигур или их частей отсчитывают нужное число элементов, увеличивают (уменьшают) их на заданное число штук (или в заданное число раз), подсчитывают результат и т.д.

Особое внимание в курсе уделяется рассмотрению формы и взаимного расположения геометрических фигур на плоскости и в пространстве. Так, учащиеся конструируют из моделей линейных и плоскостных геометрических фигур различные объекты, при этом уровень сложности учебных заданий такого вида постоянно растёт, и подводятся к возможности использования этих моделей не только для конструирования на плоскости, но и в пространстве, в частности для изготовления многогранников (пирамида, прямоугольный параллелепипед, куб) и их каркасов.

Работа по изготовлению моделей геометрических фигур и композиций из них сопровождается вычерчиванием промежуточных или конечных результатов, учащиеся подводятся к пониманию роли и значения чертежа в конструкторской деятельности, у них формируются умения выполнять чертёж, читать его, вносить дополнения и др.

Факультативный курс «Математика и конструирование» для начальной школы рассчитан на 33ч (1 ч в неделю) в 1 классе и на 34 ч (1 ч в неделю) во 2-4 классах.

В основе построения данного курса лежит идея гуманизации математического образования, соответствующая современным представлениям о целях школьного образования и ставящая в центр внимания личность ученика, его интересы и способности. В основе методов и средств обучения лежит деятельностный подход. Курс позволяет обеспечить требуемый уровень подготовки школьников, предусматриваемый государственным стандартом математического образования, а также позволяет осуществлять при этом такую подготовку, которая является достаточной для углубленного изучения математики.

Предлагаемый курс предназначен для развития математических способностей

учащихся, для формирования элементов логической и алгоритмической грамотности, коммуникативных умений младших школьников с применением коллективных форм организации занятий и использованием современных средств обучения. Создание на занятиях ситуаций активного поиска, предоставление возможности сделать собственное «открытие», знакомство с оригинальными путями рассуждений, овладение элементарными навыками исследовательской деятельности позволят обучающимся реализовать свои возможности, приобрести уверенность в своих силах.

Ценностными ориентирами содержания данного курса являются:

- формирование умения рассуждать как компонента логической грамотности;
 освоение эвристических приемов рассуждений;
- формирование интеллектуальных умений, связанных с выбором стратегии решения, анализом ситуации, сопоставлением данных;
 - развитие познавательной активности и самостоятельности учащихся;
- формирование способностей наблюдать, сравнивать, обобщать, находить простейшие закономерности, использовать догадку, строить и проверять простейшие гипотезы;
- формирование пространственных представлений и пространственного воображения;
- привлечение учащихся к обмену информацией в ходе свободного общения на занятиях.

На четвёртом году учёбы, учитывая психологические особенности данной возрастной группы, акцент перемещается от групповых форм работы к индивидуальным. Способы общения детей друг с другом носит дискуссионный характер.

В работе с детьми нами будут использованы следующие методы:

- словесные,
- наглядные,
- практические,
- исследовательские.

Ведущим методом является исследовательский. Организаторами исследований могут, кроме учителя, становиться дети.

Для развития различных сторон мышления в программе предусмотрены разнообразные виды учебных действий, которые разбиты на три большие группы: репродуктивные, продуктивные (творческие) и контролирующие.

К репродуктивным относятся:

- а) исполнительские учебные действия, которые предполагают выполнение заданий по образцу,
- б) воспроизводящие учебные действия направлены на формирование вычислительных и графических навыков.

Ко второй группе относятся три вида учебных действий - это **обобщающие мыслительные действия**, осуществляемые детьми под руководством учителя при объяснении нового материала в связи с выполнением заданий аналитического, сравнительного и обобщающего характера.

Поисковые учебные действия, при применении которых дети осуществляют

отдельные шаги самостоятельного поиска новых знаний.

Преобразующие учебные действия, связанные с преобразованием примеров и задач и направленные на формирование диалектических умственных действий.

Личностные, метапредметные и предметные результаты освоения учебного курса

Личностными результаты

- развитие любознательности, сообразительности при выполнении
- разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения
- преодолевать трудности качеств весьма важных в практической деятельности
- любого человека;
- воспитание чувства справедливости, ответственности;
- развитие самостоятельности суждений, независимости и нестандартности
- мышления.

Метапредметные результаты

- *Ориентироваться* в понятиях «влево», «вправо», «вверх», «вниз».
- *Ориентироваться* на точку начала движения, на числа и стрелки $1 \to 1 \downarrow$ и др., указывающие направление движения.
- Проводить линии по заданному маршруту (алгоритму).
- Выделять фигуру заданной формы на сложном чертеже.
- Анализировать расположение деталей (танов, треугольников, уголков, спичек) в исходной конструкции.
- Составлять фигуры из частей. Определять место заданной детали в конструкции.
- *Выявлять* закономерности в расположении деталей; *составлять* детали в соответствии с заданным контуром конструкции.
- Сопоставлять полученный (промежуточный, итоговый) результат с заданным условием.
- Объяснять (доказывать) выбор деталей или способа действия при заданном условии.
- Анализировать предложенные возможные варианты верного решения.
- *Моделировать* объёмные фигуры из различных материалов (проволока, пластилин и др.) и из развёрток.
- *Осуществлять* развернутые действия контроля и самоконтроля: сравнивать построенную конструкцию с образцом. *Предметные результаты*
- Пространственные представления. Понятия «влево», «вправо», «вверх», «вниз». Маршрут передвижения. Точка начала движения; число, стрелка $1 \rightarrow 1 \downarrow$, указывающие направление движения. Проведение линии по заданному

маршруту (алгоритму): путешествие точки (на листе в клетку). Построение собственного маршрута (рисунка) и его описание.

- Решение разных видов задач. Воспроизведение способа решения задачи. Выбор наиболее эффективных способов решения.
- Геометрические узоры. Закономерности в узорах. Симметрия. Фигуры, имеющие одну и несколько осей симметрии.
- Расположение деталей фигуры в исходной конструкции (треугольники, таны, уголки, спички). Части фигуры. Место заданной фигуры в конструкции.
- Расположение деталей. Выбор деталей в соответствии с заданным контуром конструкции. Поиск нескольких возможных вариантов решения. Составление и зарисовка фигур по собственному замыслу.
- Разрезание и составление фигур. Деление заданной фигуры на равные по площади части.
- Поиск заданных фигур в фигурах сложной конфигурации.
- Решение задач, формирующих геометрическую наблюдательность.
- Распознавание (нахождение) окружности на орнаменте. Составление (вычерчивание) орнамента с использованием циркуля (по образцу, по собственному замыслу).
- Объёмные фигуры: цилиндр, конус, пирамида, шар, куб. Моделирование из проволоки. Создание объёмных фигур из разверток: цилиндр, призма шестиугольная, призма треугольная, куб, конус, четырёхугольная пирамида, октаэдр, параллелепипед, усеченный конус, усеченная пирамида, пятиугольная пирамида, икосаэдр.

Универсальные учебные действия

- Сравнивать разные приемы действий, выбирать удобные способы для выполнения конкретного задания.
- *Моделировать* в процессе совместного обсуждения алгоритм решения числового кроссворда; *использовать* его в ходе самостоятельной работы.
- Применять изученные способы учебной работы и приёмы вычислений для работы с числовыми головоломками.
- *Анализировать* правила игры. *Действовать* в соответствии с заданными правилами.
- *Включаться* в групповую работу. *Участвовать* в обсуждении проблемных вопросов, высказывать собственное мнение и аргументировать его.
- *Выполнять* пробное учебное действие, фиксировать индивидуальное затруднение в пробном действии.
- *Аргументировать* свою позицию в коммуникации, *учитывать* разные мнения,
- Использовать критерии для обоснования своего суждения.
- *Сопоставлять* полученный (промежуточный, итоговый) результат с заданным условием.
- Контролировать свою деятельность: обнаруживать и исправлять ошибки.